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Abstract

Coal seam degasification improves coal mine safety by reducing the gas content of coal seams and 

also by generating added value as an energy source. Coal seam reservoir simulation is one of the 

most effective ways to help with these two main objectives. As in all modeling and simulation 

studies, how the reservoir is defined and whether observed productions can be predicted are 

important considerations.

Using geostatistical realizations as spatial maps of different coal reservoir properties is a more 

realistic approach than assuming uniform properties across the field. In fact, this approach can 

help with simultaneous history matching of multiple wellbores to enhance the confidence in 

spatial models of different coal properties that are pertinent to degasification. The problem that 

still remains is the uncertainty in geostatistical simulations originating from the partial sampling of 

the seam that does not properly reflect the stochastic nature of coal property realizations. 

Stochastic simulations and using individual realizations, rather than E-type, make evaluation of 

uncertainty possible.

This work is an advancement over Karacan et al. (2014) in the sense of assessing uncertainty that 

stems from geostatistical maps. In this work, we batched 100 individual realizations of 10 coal 

properties that were randomly generated to create 100 bundles and used them in 100 separate coal 

seam reservoir simulations for simultaneous history matching. We then evaluated the history 

matching errors for each bundle and defined the single set of realizations that would minimize the 

error for all wells. We further compared the errors with those of E-type and the average realization 

of the best matches. Unlike in Karacan et al. (2014), which used E-type maps and average of 

quantile maps, using these 100 bundles created 100 different history match results from separate 

simulations, and distributions of results for in-place gas quantity, for example, from which 

uncertainty in coal property realizations could be evaluated.

The study helped to determine the realization bundle that consisted of the spatial maps of coal 

properties, which resulted in minimum error. In addition, it was shown that both E-type and the 
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average of realizations that gave the best match for invidual approximated the same properties 

resonably. Moreover, the determined realization bundle showed that the study field initially had 

151.5 million m3 (cubic meter) of gas and 1.04 million m3 water in the coal, corresponding to Q90 

of the entire range of probability for gas and close to Q75 for water. In 2013, in-place fluid 

amounts decreased to 138.9 million m3 and 0.997 million m3 for gas and water, respectively.
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1. Introduction

Coal seam degasification is an important practice for minable coal seams for two reasons; 

the first is its proven effectiveness in improving the safety of underground coal mines by 

reducing the risk of methane explosions through a reduction in coal gas content, and the 

second is the potential of utilizing produced methane as an unconventional energy source 

either as pipeline gas or to generate electricity at the mine site [15,23].

It is widely recognized that ventilation of underground coal mines with an adequate amount 

of dilution air is important to prevent formation of explosive methane–air mixtures. 

However, when gas contents of coal seams are high, or their structural and reservoir 

properties favor high methane emissions, ventilation alone may not be enough to keep 

methane levels within statutory limits, thus increasing the potential for methane ignitions. 

Coal gas extraction developed in the 70s in the Oak Grove field of the Black Warrior Basin 

in Jefferson County, Alabama, and initially was intended to reduce high gas content of the 

Mary Lee coal seam and thus reduce methane emissions into active mine workings. The 

results of these past efforts showed that methane production using vertical boreholes and 

combined with hydraulic fracturing significantly decreased frictional ignitions and methane 

explosion dangers in coal mining [8].

Coal seam gas drainage that started with mining safety in mind has drastically improved 

since the 70s: for optimum reservoir management, for effective gas injection and production 

in minable and unminable coal seams, gas capture from abandoned mines, and for gas 

production and geo-sequestration (e.g. [21,27,18,19,16,20,10,3,26]. Due to the socio-

economic importance of these objectives, production analyses (e.g. [1] and coal bed 

reservoir simulation techniques have been developed and improved over the years, and have 

remained as one of the most dependable and effective methods of reservoir analysis and 

management [11]. This is especially true for coal seam reservoir models that are 

benchmarked using simultaneous multi-well history matching of well production.

The purpose of history matching, especially multi-well, is to gain confidence in the values of 

assigned coal properties and their distribution within the modeling domain of interest. 

However, coal seams are more heterogeneous compared to conventional oil or gas reservoirs, 

and properties that control fluid storage and flow may show significant variations even over 

small distances [17]. Establishing multiple coal properties and assigning uniform values to 
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match observed productions are deterministic, time consuming, and ultimately may not be 

effective for multi-well history matching. In order to address this problem and to be able to 

simultaneously history match multiple wells, Karacan et al. [12] modeled a coal seam 

degasification area in Indiana using geostatistics to produce average interpolated values for 

parameters and predictions from E-type realizations of coal properties. The approach 

included six years of production data from nine wells, allowing for effective simultaneous 

multi-well history matching. However, in Karacan et al. [12], full advantage of stochastic 

simulations was not taken advantage of by using E-type maps instead of individual 

realizations. E-type maps are the median-value map that is constructed by using all available 

realizations of the same property. They, therefore, can be considered as kind of average and 

do help assessing uncertainty in results with respect to other potential inputs.

Depending on the objective of the work, different applications of geostatistics can be merely 

an intermediate step rather than a final one. This is especially true if the purpose of 

generating geostatistical representations is to use them for flow studies. The objective of the 

present study is to expand previous geostatistical simulation results from Karacan et al. [12] 

by taking full advantage of geostatistics and stochastic simulations to address uncertainty 

that stems from partial sampling of the coal and from property realizations. For this purpose, 

100 randomly generated realizations for each of the 10 properties were batched to create 100 

bundles and were used in 100 separate reservoir simulations. Errors of each bundle in 

matching wellbore gas and water productions were evaluated to define the single set of 

realizations that would minimize error for all wells. The specific aim is to quantify 

uncertainty through minimization of history matching errors for single and multiple wells, 

thereby determining the most probable set of realizations for coal properties in the modeled 

area that could be used in all important calculations related to in-place fluid volumes and for 

making decisions related to degasification.

2. Description of the study and background information

This work is built upon some of the concepts and analyses performed in Karacan et al. [12]. 

Therefore, the detailed information related to the site, geology, coal and gas properties, and 

the producing wellbores will not be repeated in this paper. However, for completeness of this 

work, brief background information related to the study site, producing wellbores, data 

sources, and some of the analyses that have already been conducted and led to the present 

work are given in this section.

The producing wells and the area studied in this paper are located in the Indiana portion of 

the Illinois Basin, USA. The wells are located in Sullivan County (Fig. 1) and have been 

producing methane of mostly biogenic origin from the Seelyville coal seam since July of 

2007. The Seelyville coal seam is within the Pennsylvanian aged formations of the 

Carbondale Group and occurs generally at depths between 150 and 200 m in Sullivan 

County, and contains high-volatile bituminous C and B rank coal (Fig. 1). Besides the 

Seelyville coal seam of the Linton Formation, other important seams in this stratigraphy are 

the Danville and Hymera coal seams of the Dugger Formation and the Springfield coal seam 

of the Petersburg Formation due to their thicknesses and lateral extents [22,7].
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Measurements of reservoir pressures and gas contents suggest that the Seelyville coal is 

saturated (in terms of gas adsorption equilibrium) with gas contents ranging from 1.25 to 

4.25 m3/ton. This gas is mostly methane (>95%), rich in biogenic origin. However, 

significant variations in the gas content can be expected in both the lateral and vertical 

directions [28]. The nine coalbed methane (CBM) wells studied in this work (Fig. 1) are not 

fractured due to high coal permeability. However, they had skin values determined from 

production analysis indicating a zone of negative (6 wells) and positive (3 wells) skin around 

the completions. These nine wells collectively produced approximately 15 million m3 of this 

gas between July of 2007 and October of 2013, which was sold to a nearby pipeline. This 

period is the duration of the production data analyzed in this paper. Measured bottom-hole 

pressures and gas and water production rates, referred to as historical data, from 5 of these 

wells are shown in Fig. 2.

2.1. Brief description of the background work to link it to the current work and uncertainty 
assessment

Geostatistical approaches that generate realizations of important coal properties related to 

fluid storage and transport within the coal seams and the resultant reservoir simulations for 

history matching were driven by the actual data. Therefore, the work started with the 

examination of data availability and validation to identify modeling domains. The majority 

of the spatial coal properties such as thickness, depth, and ash-moisture were extracted from 

databases [5,6]. Other important data related to coal reservoir properties were determined by 

analyzing each well’s gas and water production rates using Fekete’s F.A.S.T. CBM™ 

software version 4.7 [9], and assuming a pseudo-steady state approach based on the long 

production periods. These properties included coal permeability, porosity, water saturation, 

relative permeability functions, and coal matrix shrinkage functions at individual well 

locations. Details of the data, data sources, and production data analyses of CBM wells are 

discussed in Karacan et al. [12].

To simulate coal seam reservoir production and to generate geostatistical realizations of coal 

properties, a model area was developed covering a 27.2-km2 area with 7.25-km and 3.75-km 

lengths in x and y directions, respectively. The model area was divided into 75 and 145 

nodes in x and y directions with a 50-m node spacing (Fig. 1).

Spatial data were conditionally simulated by using a sequential Gaussian simulation 

(SGSIM) and sequential Gaussian co-simulation (co-SGSIM) techniques to generate 

realizations of each of the coal properties using the Stanford University geostatistical 

modelling software package (SGeMS) [25]. One hundred realizations for each of the coal 

properties—permeability (x, y, z), cleat porosity, water saturation, thickness, depth, 

Langmuir volume (VL) scaled for ash and moisture content, and pressure—were generated 

stochastically by changing the seed number between each of the realization-generation steps. 

In scaling Langmuir volume to as-received basis, methane isotherm reported on dry-ash-free 

basis (daf), was adjusted for the cumulative amount of moisture and ash content at data 

locations so that the VL would represent as-received conditions and would include the 

volume-reducing effect of ash and moisture in maps used for production history matching. 

In addition, gas and water relative permeability as well as matrix shrinkage functions 
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determined from the production analyses of each CBM well were assigned to the nodes of 

the generated Voronoi regions that represented the nearest neighborhood of a specific CBM 

well for those properties [12].

Generation of all geostatistical realizations by using the same number and size of the nodes 

and at the same node addresses as the reservoir simulation model grid made importing coal 

property maps into the reservoir simulation grid readily possible. Reservoir simulations for 

simultaneous history matching were performed using GEM v. 2007 [2] with a dual-porosity 

formulation and by operating the wells with measured bottom-hole pressure constraints.

The reservoir simulations performed and presented in Karacan et al. [12] used E-type maps 

of all coal property realizations and the average realization of the quantile realizations (Q-

average) determined in every 10 quantiles between 5 and 95. The Q-average realizations 

were used as step-wise approximations to the E-type and to generate more realistic 

representations of the spatial distribution of coal properties to be used in reservoir 

simulations.

Although both E-type and Q-average maps of coal properties were successful for 

simultaneous history matching of gas and water productions of all wells, they did not 

effectively address the uncertainty associated with stochastic maps (100 in this case for each 

property). E-type and its proxy map, Q-average, cover uncertainty that can otherwise be 

assessed by using each individual realization in reservoir simulation for testing history 

matching errors. In fact, this is an advantage that the stochastic geostatistical simulations 

offer when the generated property maps are used in reservoir simulations [24]. This 

distinction is where this paper diverts in scope and content from our previous work [12] and 

thus connects to the objective of the current paper.

In this work, all 100 realizations of 10 different properties, not just the E-type, were used in 

100 separate simulations in order to be able to assess errors and uncertainty, and to establish 

confidence intervals through distributions of parameters. In this regard, this work takes the 

full advantage of stochastic geostatistical simulations in coal seam reservoir studies and can 

be considered as an improvement over Karacan et al. [12].

3. Coal bed reservoir simulations of gas drainage using individual 

realization bundles and assessment of history matching errors

Generation of stochastic maps using different seed numbers prior to each simulation in 

SGSIM or co-SGSIM was random by the nature of the process [25,4]. Therefore, 100 

stochastic realizations for each of the simulated and co-simulated coal variables made up 

100 random bundles of property maps that could be used in 100 different reservoir 

simulations for assessing uncertainty through history matching errors. It should be reiterated 

that since the realizations were generated randomly by changing the seed number at the start 

of stochastic simulations of each coal properties, it was assumed that 100 realizations of 

each of the 10 properties were randomly sequenced to form 10 decks of 100 realizations. As 

the continuation of the random nature of stochastic processes and random sampling, initially 

we took the first realization from each set to build the first bundle, and then second from 
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each set, and then the third and so forth, to create 100 bundles of random samples. We did 

not make a separate pre-sorting of realizations in attempt to form the best bundle. The best 

possibility was judged based on history match results.

In this work, the name of the bundle and its simulation results is denoted by the name of the 

realizations (real 15, for example). One hundred different realization bundles were created 

by assembling the corresponding realization numbers from each property set— e.g. real 15’s 

from porosity, thickness, Langmuir volume, permeability, water saturation pressure, and 

depth—into a database so each bundle could be imported into the reservoir simulator for a 

new run.

Using each of the realization bundles and operating the wells with bottom-hole pressure 

values (Fig. 2), 100 reservoir simulations were performed to generate gas and water rates for 

each of the 9 wells. Fig. 3 shows, as an example, simulated gas and water rates for all 100 

simulation runs (light-colored lines) as well as measured rates for wellbore Hall-1 (yellow 

circles).

The results shown in Fig. 3 reveal that the predicted rates differ based on the realization 

bundle used. This means that there is an error distribution associated with the uncertainty in 

realizations of coal properties. As a corollary to the distribution of the errors, it is reasonable 

to expect that there is only one realization bundle for each well that will result in the 

minimum average error when simulated rates are compared with the measured values, and 

that there is also one that will result in the maximum error. In between, there should be a 

mean and a standard deviation of errors calculated based on 100 results. In this work, the 

average error of simulated values compared to the measured ones was calculated using 

average root mean square of errors  and by using the following relation:

(1)

In this equation, Qj is the simulated rate at a particular date (j) and Qhj is the measured (or 

historical) rate at the same date. The average is calculated by the number of date events (n = 

75, in this case).

Calculating the average error between simulated and measured rates of gas and water for 

each wellbore for each simulation helps to delineate the error ranges with relevant basic 

statistics, such as minimum, maximum, mean, and standard deviation of errors. Calculating 

average errors for each simulation also helps to determine realization bundles that give 

minimum and maximum errors, and thus the best and worst scenarios of coal property 

distributions, in reservoir simulations for history matching. Although each realization is 

equi-probable in terms of representing the reality of property distributions, it is clear that 

only one of them is the correct, or close-to-correct, representation of reality in relation to the 

complex nature of fluid storage in coal seams and the flow dynamics during gas drainage. To 

follow the same wellbore given in Fig. 3 as an example, realization bundles 64 and 38 

generated the minimum and maximum average errors, respectively, in gas rate prediction for 
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Hall-1. Similarly, realization bundles 72 and 81 resulted in the minimum and maximum 

errors in water rate prediction for the same borehole. Simulated gas and water rates using 

these realization bundles as well as measured data are comparatively shown in Fig. 4 for 

Hall-1. Fig. 4 for Hall-1 and the data given in Table 1 for all wells show that there is a range 

of uncertainty in reservoir simulation results that stems from the uncertainties in realizations 

and their representativeness of the actual reservoir properties.

Additional information that can be observed in the data given in Table 1 is that the 

realization generating the best result for each wellbore is different. This means that each 

realization bundle that results in minimum matching error for each well is addressing the 

uncertainty at a local level, and only for the coal reservoir parameters within the volume that 

is affected by the pressure transients created by that wellbore. Therefore, as a corollary, it is 

clear that the best realization that is good for one wellbore will not create the same result for 

another since it will not address the coal properties at that location. This is an expected 

outcome for reservoir simulation conducted in a heterogeneous media like coal, and is a 

consequence of spatial distribution of fluid storage and flow-related properties. In fact, this 

very reason is also, if available data permits, why representative distributions of various 

properties should be used in reservoir simulations and why simultaneous multi-well history 

matching of gas and water rates should always be preferred over matches from a single 

wellbore to gain better insights about the coal seam.

In order to address the problem described above and the uncertainty associated with it, the 

first approach followed in this paper was to identify the single best realization bundle that 

would minimize the average error of simultaneous history matching for all wellbores. The 

second approach was to pick all 9 best realization bundles of each individual well that 

resulted in minimum error and average maps of corresponding coal properties to generate a 

single realization for the simulation. In the second approach, only the best realization 

bundles given for gas rates (Table 1) were used for the generation of an average. First, the 

measured gas rates were more continuous compared to the intermittent nature of water rates 

and second, the water rates were used as independent control data.

In order to identify the best realization bundle that would minimize the average history 

matching errors for all wells, Eq. (2) below was used. In this equation, the terms are similar 

to those of Eq. (1), except for the additional term “m,” the number of wells, which averages 

the cumulative error accumulated from all wells. The well-number-averaged distribution of 

errors calculated using Eq. (2) is shown in Fig. 5.

(2)

Fig. 5 shows that the average cumulative error based on the predictions of all wells ranged 

from 322.7 m3/day (minimum) to 567.9 m3/day (maximum) with a mean of 448.5 m3/day 

and a standard deviation of 52.8 m3/day. The minimum average error that would satisfy the 

entire modeling area and simultaneous history matching of all wells was determined by the 
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simulation that utilized realization bundle 69, which can be considered as the most probable 

representation of the properties of the Seelyville coal seam in the study area amongst all 100 

realization bundles.

The gas and water production rate errors predicted for individual wells by using realization 

69 and the average of best realizations, as described above, are compared to those of E-type 

in Table 2. The data shown in this table indicates that the individual errors of the wells 

achieved by bundle 69, by average of the best realizations documented in Table 1 and by the 

E-type bundle, are not very different from what were documented in Table 1. It is also 

noticeable in Table 2 that the errors of the matching results between these three realizations 

are not too large either. Therefore, it may be a fair assessment to say that these three sets of 

realization bundles can actually satisfactorily represent the properties of the entirety of this 

area for simultaneous multi-well history matching of gas and water rates, with errors 

distributed in a narrow margin. The supporting evidence for this assessment is shown 

graphically in Fig. 6, where simulated water and gas rates are compared with the measured 

values for four of the wellbores: Arnett-2, Arnett-3, Hall-1, and McCammon.

Slightly better error distribution in Table 2 with E-type, compared to realization 69, can be 

due to the smoothing effects of these two in coal properties, especially around the wellbores. 

Better errors with the average of best realizations can be a combination of eliminating most 

of the realization bundles, except for the 9 best, which may not be a true representation of 

the field and which may also due to smoothing.

The ultimate purpose of history matching is to estimate important reservoir parameters, and 

to make subsequent production and reservoir management decisions. In addition, once these 

properties and their distributions within the field are determined, they can be used to perform 

calculations related to total gas-in-place (GIP) as well as in-place water quantity. These 

volumes are important for project development and for mine safety when the purpose of 

degasification is to reduce gas content prior to coal mining.

In this work, fluid-in-place volumes were computed for all 100 realization bundles by 

following the approach presented in Karacan et al. [13], Karacan [16], and in Karacan and 

Olea [14] for gas, and using the water-occupied portion of the pore volume for water. These 

values for each realization bundle were then used to determine basic statistics and the 

quantiles of the distributions to establish the confidence interval and to assess uncertainty. 

The histograms of these quantities, as well as their basic statistics and the quantiles of these 

distributions, are shown in Fig. 7 and given in Table 3, respectively.

The basic statistics of these distributions and the values at different quantiles, which are 

given in Table 3, show that initial GIP in this area ranged between 112.4 million m3 and 

172.4 million m3, whereas water quantity in coal cleats ranged between 0.73 and 1.16 

million m3. As the result of degasification between 2007 and 2013 using these 9 wellbores, 

GIP shifted to lower values between 105 and 160 million m3 and water amount decreased to 

potential values between 0.71 and 1.13 million m3. More importantly, since the uncertainty 

assessment of coal properties based on history matching errors showed that realization 69, 

E-type, and average of best realizations are the most likely representations of the coal 
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properties, GIP and water in coal cleats within the study area were computed for those 

realizations too (Table 4). Gas and water quantities calculated based on these realizations—

specifically realization 69 and how the values of spatial properties evolved over time due to 

gas drainage—show that the field initially had 151.5 million m3 of gas and 1.04 million m3 

of water in the coal. These values correspond to Q90 of the entire range of probabilities for 

gas and close to Q75 for water. In 2013, in-place fluid amounts calculated using realization 

69 decreased to 138.9 million m3 and 0.997 million m3 for gas and water, respectively. 

These quantities are close to Q50 of the initial distribution (close to Q90 of the final 

distribution) for gas, and Q75 of the initial and final distributions for water.

Finally, Fig. 8 shows some of the coal properties from realization 69, E-type, and average of 

the best realizations for comparison purposes. The first row of images is the coal cleat 

volumes within the study area, calculated by multiplying area by thickness and porosity 

realizations. The second row is the permeability and the third is the Langmuir volume for 

methane. It is clear in these realizations that, ignoring the smoothing effects due to averaging 

between realizations, these maps carry similar characteristics in terms of spatial distribution 

of values and so they generate similar gas and water rate predictions and similar prediction 

errors. Similar templates of maps for these three realizations are given for coal pressure in 

Fig. 9. In this figure, distributions of the initial properties in 2007 are presented, in addition 

to distributions as of 2013 resulting from degasification. These figures show, again, that 

although the pressure change patterns are generally similar, they show slight spatial 

variability based on the variability of other reservoir properties, such as permeability and 

water saturation, within realization 69, E-type, and the average.

The uncertainity analyses presented in this discussion based on history matching errors 

showed that the realization 69 bundle consisted of the spatial maps of coal properties that 

resulted in simultaneous history matching of all wellbores for gas and water by generating 

the minimum amount of matching errors. Based on this result, distribution of coal properties 

within the model could be determined and uncertainty in GIP and in-place water could be 

assessed for better field management. Results also showed that both E-type and the average 

of realizations that gave the best match for invidual wells approximated the same properties 

resonably well.

4. Summary and conclusions

Geostatistical realizations of coal properties were generated using sequential Gaussian 

simulation and co-simulation techniques using spatial data from databases [12]. In this work, 

instead of using only the E-type map in simulations, 100 realizations randomly generated for 

each of the 10 properties were batched to create 100 bundles. These bundles of realizations 

were imported into reservoir simulations for 100 separate runs, and history matching errors 

of gas and water productions for each bundle were evaluated to define the single set of 

realizations that would minimize the error for all wells. Therefore, this work takes full 

advantage of stochastic simulations and extend previous findings to distributions, from 

which uncertainity can be assessed and confidence intervals can be defined. In this regard, 

this work improves previous findings of Karacan et al. [12] in the realm of uncertainty.
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Uncertainity analyses based on errors showed that the realization 69 bundle consisted of the 

spatial maps of coal properties that resulted in minimum error. In addition, it was shown that 

both E-type and the average of realizations that gave the best match for invidual wells 

approximated the same properties resonably well. Based on these results, it was concluded 

that the presented approach was effective in selecting maps of coal depth, coal thickness, 

porosity, water saturation, horizontal and vertical permeabilities, Langmuir volume, coal 

matrix, and cleat pressures. These properties are important for fluid flow and gas storage in 

coal seams to evaluate the initial conditions as well as to assess how gas and water quantity 

change or redistribute within the field as the result of degasification. The realizations of 

some of these properties were presented in the paper in comparison to E-type and to the 

average of best realizations.

In addition, the maps that represent the most likely conditions of a coal seam can be used to 

compute spatial or overall gas content, water- and gas-in-place before and after 

degasification to evaluate uncertainty within the numerical probability distribution with 

confidence intervals. For instance, the study field initially had 151.5 million m3 of gas and 

1.04 million m3 water in the coal, corresponding to Q90 of the entire range of probability for 

gas and close to Q75 for water. In 2013, in-place fluid amounts decreased to 138.9 million 

m3 and 0.997 million m3 for gas and water, respectively. These quantities are close to Q50 of 

the initial distribution (close to Q90 of final distribution) for gas, and to Q75 of initial and 

final distributions for water. Such an evaluation is not only important for project economics 

and to decide whether additional wells should be drilled, but also for improving mining 

safety through integrating potential methane emissions into the ventilation plan at the time 

of considering the coal for mining.
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HIGHLIGHTS

• Coal property realization was used.

• CBM reservoir simulations were conducted.

• History match errors were quantified.

• Uncertainty in results was evaluated.

• Most likely representations of coal properties were determined.
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Fig. 1. 
Location of study area with the coalbed methane wells. General geology of the Carbondale 

group where Seelyville coal is located and the boundaries and size of the modeled area are 

also shown.
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Fig. 2. 
Measured bottom-hole pressure, gas, and water rate data of 5 of the studied wells between 

July 2007 and October 2013.
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Fig. 3. 
Simulated gas and water production rates for all 100 simulations (light-colored lines) in 

comparison with the measured data for Hall-1. (For interpretation of the references to color 

in this figure legend, the reader is referred to the web version of this article.)
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Fig. 4. 
Results of the match between simulated rates and the measured ones using realization 

bundles 64 and 38 for gas rate and 72 and 81 for water rate, which gave minimum and 

maximum errors for Hall-1.

Karacan and Olea Page 16

Fuel (Lond). Author manuscript; available in PMC 2018 March 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
Distribution of average history matching errors (based on gas rate) calculated using Eq. (2).
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Fig. 6. 
Comparison of predicted gas and water rates using realization 69, E-type, and average of 

best realizations (BR in the legends) with the measured values for four of the wells.
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Fig. 7. 
Histograms of initial gas-in-place and water within the model area.
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Fig. 8. 
Maps of three different coal attributes for real 69, E-type, and average of best realizations 

(BR).
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Fig. 9. 
Maps of pressure distributions in 2007 and 2013 in real 69, E-type, and average of best 

realizations.
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Table 3

Quantile values and basic statistics of GIP and water quantities, based on 100 realization bundles, presented in 

Fig. 7.

Quantile GIP-initial (×106 m3) GIP-final (×106 m3) In-place water-initial (×103 m3) In-place water-final (×103 m3)

Q95 154.3 142.5 1108.5 1067.0

Q90 151.5 137.9 1089.8 1051.4

Q75 142.9 132.0 1024.0 990.2

Q50 137.1 125.8 970.3 934.1

Q25 129.2 119.5 915.1 886.0

Q10 123.0 114.6 862.7 832.3

Q5 121.7 111.3 835.6 812.5

Minimum 112.4 105.3 735.1 705.3

Maximum 172.4 157.9 1158.8 1125.0

Mean 137.0 126.4 974.0 940.1

Std. dev. 10.6 9.6 83.9 81.4
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Table 4

Initial and final GIP and water quantity calculated for the study using realization bundle 69, E-type, and 

average of best realizations.

Real-69 E-type Ave. of best
realizations

GIP (×106 m3)-initial 151.5 137.5 139.8

GIP (×106 m3)-final 138.9 123.3 125.7

In-place water (×103 m3)-initial 1036.5 910.0 901.9

In-place water (×103 m3)-final 997.4 878.6 870.9
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